Surname	Centre Number	Candidate Number
Other Names		2

GCE A level

1094/01

CHEMISTRY – CH4

P.M. MONDAY, 14 January 2013 13/4 hours

ADDITIONAL MATERIALS

In addition to this examination paper, you will need:

- a calculator:
- an 8 page answer book;
- a Data Sheet which contains a Periodic Table supplied by WJEC.

Refer to it for any relative atomic masses you require.

INCTD	UCTIONS TO	O CANDID	ATEC
INSIK		I J C A NIJII J	A

Use black ink or black ball-point pen.

Write your name, centre number and candidate number in the spaces at the top of this page.

Section A Answer all questions in the spaces provided.

Section B Answer **both** questions in **Section B** in a separate answer book which should then be placed inside this question-and-answer book.

Candidates are advised to allocate their time appropriately between **Section A (40 marks)** and **Section B (40 marks)**.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

The maximum mark for this paper is 80.

Your answers must be relevant and must make full use of the information given to be awarded full marks for a question.

The QWC label alongside particular part-questions indicates those where the Quality of Written Communication is assessed.

	ER'S	
Section	Question	Mark
	1	
A	2	
	3	
D	4	
В	5	
TOTAL MARK		

Examiner only

SECTION A

			Answer all questions in the spaces provided.	
1.	(a)	In pa	n the information given, draw the displayed formula of each compound. arts (i)-(iii) the compounds consist of molecules that have three carbon at art (iv) the compound has four carbon atoms.	oms.
		(i)	A compound that is oxidised to a ketone	[1]
		(ii)	A neutral sweet-smelling compound	[1]
		(iii)	An α-amino acid	[1]
		(iv)	A hydrocarbon that exhibits E–Z isomerism	[1]

(b) The active compound in $Ventolin^{\mathbb{R}}$ inhalers used by asthma sufferers is salbutamol, which shows optical isomerism.

salbutamol

pharmaceutical.

is refluxed with acidified K₂Cr₂O₇.

(i)	Indicate a chiral	l centre in this mo	lecule by la	abelling it with a	ın asterisk (*).	[1]
-----	-------------------	---------------------	--------------	--------------------	------------------	-----

(ii) State how the optical isomers of salbutamol could be distinguished from each other. [1]

(iii) Suggest a reason why only one optical isomer of salbutamol is used as a

(iv) Draw the displayed formula of the likely organic product formed when salbutamol

1094 010003

(c)	(i)	Arrange the follow	_			[1]	Examiner only
		ethanoic acid	ethanol	ethylamine	phenol		
least acidic						most acidic	
	(ii)	Explain the differe	nce in acid-ba	se properties of etl	nylamine and phenol.	[4]	
	•						
	•••••						
	•••••					······································	
					To	otal [14]	

BLANK PAGE

© WJEC CBAC Ltd. (1094-01) Turn over.

Examiner only

2. (a) 2,4-Dinitrophenylhydrazine reagent (2,4-DNP), Tollens' reagent and iodine in sodium hydroxide solution can all be used in the laboratory to identify unknown compounds. Complete the table below by giving any observations made (or writing 'no reaction' as appropriate) when these reagents are added to the compounds listed. [4]

	butan-2-ol	ethanal	ethanol	propanone
2,4-DNP	no reaction			
Tollens' reagent			no reaction	
I ₂ /NaOH				

(b) Under certain conditions ethanol can be formed from ethene and water. A possible mechanism for this reaction is shown below.

$$CH_2 = CH_2 + H^+ \longrightarrow CH_3CH_2^+ \xrightarrow{H_2O} C_2H_5OH + H^+$$

- (i) Classify this type of mechanism. [1]
- (ii) State the name given to species such as the intermediate ion $CH_3CH_2^+$. [1]
- (iii) Give another reaction of ethene that follows this type of mechanism. [1]
- (iv) Give a reason why the main product of the reaction between propene and water under similar conditions is propan-2-ol. [1]

(c)	Propanone can	react with	hydrogen	cyanide.
-----	---------------	------------	----------	----------

(i) Classify the type of reaction taking place when propanone reacts in this way. [1]

ii) Draw the mechanism for this reaction. [3]

Total [12]

1094 010007 **3.** Read the passage below and then answer the questions in the spaces provided.

Tastes in food

The sensation of taste can be categorized into five basic tastes: sweet, bitter, sour, salty and umami. Humans receive tastes through sensory organs called taste buds concentrated on the top of the tongue. Pungency also helps us to describe the tastes that we encounter in food. Some of these tastes are described below.

5 Sweetness

One theory in the 1960s proposed that to be sweet, a compound must contain a hydrogen bond donor (AH) and a hydrogen bond accepter (B).

Human taste buds are much more sensitive to synthetic sweeteners than to naturally-occurring sugars. For example, aspartame is 200 times sweeter than sucrose.

Umami

Umami is a Japanese word meaning 'good flavour' or 'good taste' and is described as a savoury or meaty taste. Monosodium glutamate (MSG), the monosodium salt of glutamic acid, was developed as a food additive in 1908 by a Japanese scientist and produces a strong umami taste.

Other foods that have always been popular as flavourings are now known to be rich in umami substances. These include seaweeds, fish, mushrooms and tomatoes.

Like other basic tastes, MSG improves pleasantness only in the right concentration. An excess of MSG quickly ruins the taste of a dish e.g. in clear soup the 'pleasantness score' rapidly falls with 1 g or more of MSG per 100 cm³.

10

15

20

Pungency

One group of compounds that produce a sensation of pungency or heat contain an aromatic ring system carrying two oxygen atoms. This seems to be the key structure responsible for their interaction with the taste buds. Two examples are shown below.

25

(a)

$$H_{3}C$$
 $CH-CH=CH-(CH_{2})_{4}-C-N-CH_{2}$
 OCH_{3}
 $H_{3}C$
 OCH_{3}
 OCH_{3}
 OCH_{3}

capsaicin (chilli peppers)

$$\begin{array}{c} O \\ O \\ \parallel \\ O \\ O \\ O \\ O \\ \end{array} \\ \begin{array}{c} O \\ C \\ - \\ O \\ \end{array} \\ \begin{array}{c} O \\ C \\ - \\ O \\ - \\ O \\ \end{array} \\ \begin{array}{c} O \\ C \\ - \\ O \\ - \\ O \\ \end{array} \\ \begin{array}{c} O \\ C \\ - \\ O \\ - \\ O \\ \end{array} \\ \begin{array}{c} O \\ C \\ - \\ O \\ - \\ O \\ \end{array} \\ \begin{array}{c} O \\ C \\ - \\ O \\ - \\ O \\ \end{array} \\ \begin{array}{c} O \\ C \\ - \\ O \\ - \\ O \\ \end{array} \\ \begin{array}{c} O \\ C \\ - \\ O \\ - \\ O \\ \end{array} \\ \begin{array}{c} O \\ C \\ - \\ O \\ - \\ O \\ \end{array} \\ \begin{array}{c} O \\ C \\ - \\ O \\ - \\ O \\ \end{array} \\ \begin{array}{c} O \\ C \\ - \\ O \\ - \\ O \\ \end{array} \\ \begin{array}{c} O \\ C \\ - \\ O \\ - \\ O \\ \end{array} \\ \begin{array}{c} O \\ C \\ - \\ O \\ - \\ O \\ \end{array} \\ \begin{array}{c} O \\ C \\ - \\ O \\ - \\ O \\ \end{array} \\ \begin{array}{c} O \\ C \\ - \\ O \\ - \\ O \\ \end{array} \\ \begin{array}{c} O \\ C \\ - \\ O \\ - \\ O \\ \end{array} \\ \begin{array}{c} O \\ C \\ - \\ O \\ - \\ O \\ \end{array} \\ \begin{array}{c} O \\ C \\ - \\ O \\ - \\ O \\ \end{array} \\ \begin{array}{c} O \\ C \\ - \\ O \\ - \\ O \\ \end{array} \\ \begin{array}{c} O \\ C \\ - \\ O \\ \end{array} \\ \begin{array}{c} O \\ C \\ - \\ O \\ \end{array} \\ \begin{array}{c} O \\ - \\ O \\ - \\ O \\ \end{array} \\ \begin{array}{c} O \\ C \\ - \\ \end{array} \\ \begin{array}{c} O \\ C \\ - \\ O \\ \end{array} \\ \begin{array}{c} O \\ C \\ - \\ \end{array} \\ \begin{array}{c} O \\ C \\ - \\ O \\ \end{array} \\ \begin{array}{c} O \\ C \\ - \\ O \\ \end{array} \\ \begin{array}{c} O \\ C \\ - \\ \end{array} \\ \begin{array}{c} O \\ C \\ \\ \end{array} \\ \\ \begin{array}{c} O \\ C$$

gingerol (ginger)

- End of passage -

Describe what is meant by hydrogen bonding, using an example of your choice.

<i>QWC</i> [1]
······································
······································

© WJEC CBAC Ltd. (1094-01) Turn over.

Examiner only

[3]

Examiner only

(b) Aspartame (line 10) is a methyl ester of a dipeptide formed from two α -amino acids. The structure of one of the acids is as shown below.

$$\begin{array}{c|c} H & O \\ | & || \\ | & \\ \text{HOOC} - \text{CH}_2 - \text{C} - \text{C} - \text{OH} \\ | & \\ \text{NH}_2 \end{array}$$

Draw the structure of the other α -amino acid.

[1]

(c) Glutamic acid (*line 16*) is amphoteric. Explain the meaning of the term *amphoteric* and why glutamic acid exhibits amphoteric behaviour. [2]

(d) Draw the **skeletal** formula of glutamic acid. [1]

$$\begin{array}{c} \text{COOH} \\ | \\ \text{H}_2\text{N} - \text{CH} \\ | \\ \text{CH}_2 \\ | \\ \text{CH}_2 \\ | \\ \text{COOH} \end{array}$$

glutamic acid

		Examiner
(e)	Calculate the minimum concentration of MSG, in mol dm ⁻³ , which if added to clear soup makes its 'pleasantness score' rapidly fall (<i>lines 20-21</i>). [2]	
	$Minimum\ concentration = \dots mol\ dm^{-3}$	
(f)	Giving the reagent(s) and an observation, state a chemical test that gives a positive result with both capsaicin and gingerol (<i>lines 26-27</i>). [2]	
	Reagent(s)	
	Observation	
(g)	Giving the reagent(s) and an observation, state a chemical test that gives a positive result with gingerol but not with capsaicin. [2]	
	Reagent(s)	
	Observation	
	Total [14]	
	Total Section A [40]	

© WJEC CBAC Ltd. (1094-01) Turn over.

SECTION B

Answer **both** questions in the separate answer book provided.

4. (a) Today there are thousands of different polymers and they are used in a wide range of applications.

Describe the formation of **one** synthetic polymer and **one** natural polymer, both made by condensation polymerisation.

Your answer should include

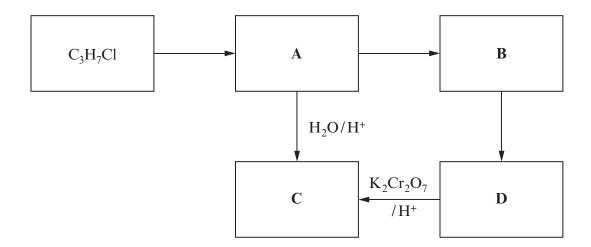
- the names or structures of the starting materials required for both polymers,
- a structure which shows the repeating unit for the synthetic polymer,
- a structure which shows the relevant linkage in the natural polymer.

QWC 1

(b) **F** and **G** are two organohalogen compounds.

(chloromethyl) benzene
$$Cl \longrightarrow Cl$$
 G

Compound **F** is used in the manufacture of plasticizers and perfumes and behaves as a chloroalkane. Compound **G** is used as a pesticide and as a deodorant.


- (i) Draw the displayed formula of compound **F**. [1]
- (ii) Name compound G. [1]
- (iii) State the reagent(s) and condition(s) needed to substitute a chlorine atom into a benzene ring. [2]
- (iv) Describe how you could use a chemical test to distinguish between compounds **F** and **G**. Give the expected result for **each** compound and an explanation for any difference in their behaviour.

 [6]

 OWC [1]
- (c) Benzenediazonium chloride can be prepared as follows. Phenylamine is dissolved in excess hydrochloric acid and the solution cooled to 5°C. Aqueous sodium nitrate(III), NaNO₂, is added gradually until in excess, keeping the temperature at approximately 5°C.
 - (i) State why the temperature is kept under 10 °C. [1]
 - (ii) Give the displayed formula of the compound that forms when benzenediazonium chloride reacts with naphthalene-2-ol in alkaline conditions. [1]
 - (iii) State what is meant by the term *chromophore*. [1]

Total [20]

5. (a) Study the reaction scheme shown below and the other information about compounds **A-D** that follows.

Compound A contains a straight carbon chain and contains only carbon, hydrogen and nitrogen.

Compound **B** is basic and reacts with hydrochloric acid in a 1:1 molar ratio.

 $0.395\,\mathrm{g}$ of compound **B** in aqueous solution requires $54.00\,\mathrm{cm}^3$ of hydrochloric acid solution of concentration $0.100\,\mathrm{mol\,dm}^{-3}$ for complete neutralisation.

Compound C reacts with sodium carbonate giving off carbon dioxide.

- (i) Calculate the relative molecular mass of compound **B**. Show your working. [2]
- (ii) Identify the structures of compounds **A-D**, giving your full reasoning. [8]
- (b) C₃H₇Cl exists as two isomers. Sketch the **low** resolution NMR spectra of both isomers giving the approximate chemical shift (ppm) and the relative area of each peak. [4]

QUESTION 5 CONTINUES ON PAGES 14 AND 15

© WJEC CBAC Ltd. (1094-01) Turn over.

[2]

(c) Phenol can be made by the following three-step synthesis.

However, the industrial method of making phenol uses a different route as shown below.

$$\begin{array}{c|c} CH(CH_3)_2 \\ \hline \\ Zeolite catalyst \\ \hline \\ O_2 / 100 ^{\circ}C then \ H_2SO_4(aq) \\ \hline \\ OH \\ \hline \\ CH_3 - C - CH_3 \\ \hline \\ O \end{array}$$

- (i) Give **two** possible advantages of the industrial route.
- (ii) Until 1995 solid phosphoric acid was used as the catalyst for the first stage of the industrial route. Suggest a reason, apart from an increased reaction rate, why this was changed to a zeolite catalyst. [1]

(d) Phenol can be converted into aspirin.

aspirin

When 58.75 g of phenol was reacted with the appropriate chemicals, the yield of aspirin was 65%. Calculate the mass of aspirin produced in this process. [3]

Total [20]

Section B Total [40]

END OF PAPER

GCE A level

CHEMISTRY – DATA SHEET FOR USE WITH CH4

P.M. MONDAY, 14 January 2013

Infrared Spectroscopy characteristic absorption values

Bond	Wavenumber/cm ⁻¹
C—Br	500 to 600
C—Cl	650 to 800
C—O	1000 to 1300
C = C	1620 to 1670
C=0	1650 to 1750
C≡N	2100 to 2250
С—Н	2800 to 3100
О—Н	2500 to 3550
N—H	3300 to 3500

Nuclear Magnetic Resonance Spectroscopy

Candidates are reminded that the splitting of any resonance into **n** components indicates the presence of **n**-**1** hydrogen atoms on the **adjacent** carbon, oxygen or nitrogen atoms.

Typical proton chemical shift values (δ) relative to TMS = 0

Type of proton	Chemical shift/ppm
$-CH_3$	0.1 to 2.0
$R-CH_3$	0.9
$R-CH_2-R$	1.3
CH_3 — C \equiv N	2.0
CH_3-C O $-CH_2-C$ O	2.0 to 2.5
$-CH_2-C$	2.0 to 3.0
R-CH ₂ Cl, R-CHCl-R	3.0 to 4.3
R—ОН	4.5 *
$R-C \bigcirc O$	9.8 *
R−C OH	11.0 *

^{*}variable figure dependent on concentration and solvent

THE PERIODIC TABLE	Group 3 4 5 6 7	Key p Block	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	d Block d Block Alminium Silicon Silicon Sulfur Chlorine 13 14 15 16 17	47.9 50.9 52.0 54.9 55.8 58.7 63.5 63.5 63.5 63.5 63.5 63.5 63.5 63.5 63.5 63.5 63.5 63.5 63.5 63.5 63.5 63.5 63.7 72.6 72.6 79.0 79.0 79.9 79.0 79.9 79.0 79.9 79.0 <th< th=""><th>91.2 92.9 95.9 98.9 101 103 106 108 112 115 119 122 127 127 Zir Obium 40 bybenum 40 H at 4 bt 4</th><th>Hf Ta W Re OS Ir Pt Au Hg Tl Pb Bi Po At Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury Thallium Lead Bismuth Polonium Astatine 72 73 74 75 76 77 78 79 80 81 82 83 84 85</th><th>f Block</th><th>140 141 144 (147) 150 (153) 157 159 163 165 167 169 173 175 Cerium Promethium Sodymium Promethium Samarium Europium Gedolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium 58 59 60 61 62 63 64 65 66 67 68 69 70 71</th><th>232 (231) 238 (237) (242) (243) (247) (245) (251) (254) (253) (256) (253) (257) Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr Thorium Dranium Diptonium Americium Curium Berkelium Californium Fermium Nobelium Nobelium Lawrencium</th></th<>	91.2 92.9 95.9 98.9 101 103 106 108 112 115 119 122 127 127 Zir Obium 40 bybenum 40 H at 4 bt 4	Hf Ta W Re OS Ir Pt Au Hg Tl Pb Bi Po At Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury Thallium Lead Bismuth Polonium Astatine 72 73 74 75 76 77 78 79 80 81 82 83 84 85	f Block	140 141 144 (147) 150 (153) 157 159 163 165 167 169 173 175 Cerium Promethium Sodymium Promethium Samarium Europium Gedolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium 58 59 60 61 62 63 64 65 66 67 68 69 70 71	232 (231) 238 (237) (242) (243) (247) (245) (251) (254) (253) (256) (253) (257) Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr Thorium Dranium Diptonium Americium Curium Berkelium Californium Fermium Nobelium Nobelium Lawrencium
					47.9 Ti Titanium	91.2 Zr Zirconium 40	Hf Hafnium 72	. I	140 Ce Cerium 58	Е
	~	1	9.01 Be Beryllium 4 A24.3 Mg	24.3 Mg Magnesium 12	40.1 45.0 Ca Calcium Scandium 20 21	87.6 88.9 Sr Y Strontium Yttrium 38	137 139 Ba La Barium 56 57	(226) (227) P R A C B A C B A C C C C C C C C C C	► Lanthanoid elements	►► Actinoid elements
	1 S Block	1.01 H Hydrogen	6.94 Lithium Be	23.0 Na Sodium Ma	39.1 K Potassium Ca	85.5 Rb Rubidium Str	133 Cs Caesium Bs	(223) (Fr Francium Ra 87	-	•
	Period	1	© WJEC CB	AC Ltd.	(1094-01A	· •	9	7		

3

 $_{2}^{4.00}$ Helium

20.2 Neon

40.0
Arc
Argon
18
83.8
Kr
Krypton
36
131
Xe
Xenon
54
(222)
Rn
Radon
86